MetalLB hooks into your Kubernetes cluster, and provides a network load-balancer implementation. In short, it allows you to create Kubernetes services of type “LoadBalancer” in clusters that don’t run on a cloud provider, and thus cannot simply hook into paid products to provide load-balancers.

It has two features that work together to provide this service: address allocation, and external announcement.

Address allocation

In a cloud-enabled Kubernetes cluster, you request a load-balancer, and your cloud platform assigns an IP address to you. In a bare metal cluster, MetalLB is responsible for that allocation.

MetalLB cannot create IP addresses out of thin air, so you do have to give it pools of IP addresses that it can use. MetalLB will take care of assigning and unassigning individual addresses as services come and go, but it will only ever hand out IPs that are part of its configured pools.

How you get IP address pools for MetalLB depends on your environment. If you’re running a bare metal cluster in a colocation facility, your hosting provider probably offers IP addresses for lease. In that case, you would lease, say, a /26 of IP space (64 addresses, and provide that range to MetalLB for cluster services.

Alternatively, your cluster might be purely private, providing services to a nearby LAN but not exposed to the internet. In that case, you could pick a range of IPs from one of the private address spaces (so-called RFC1918 addresses), and assign those to MetalLB. Such addresses are free, and work fine as long as you’re only providing cluster services to your LAN.

Or, you could do both! MetalLB lets you define as many address pools as you want, and doesn’t care what “kind” of addresses you give it.

External announcement

Once MetalLB has assigned an external IP address to a service, it needs to make the network beyond the cluster aware that the IP “lives” in the cluster.

MetalLB does this by speaking BGP to a nearby network router that you control, and telling it how to forward traffic to assigned service IPs.

Again, the specifics of the routers and BGP advertisements depend on your particular environment, there is no “one size fits all” solution. These specifics make up the bulk of MetalLB’s configuration file, to give you the flexibility to adapt MetalLB to your cluster.


MetalLB uses the BGP routing protocol to implement load-balancing. This has the advantage of simplicity, in that you don’t need specialized equipment, but it comes with some downsides as well.

The biggest is that BGP-based load balancing does not react gracefully to changes in the backend set for an address. What it effectively means is that when a cluster node goes down, you should expect all active connections to your service to be broken (users will see “Connection reset by peer”).

BGP-based routers implement stateless load-balancing. They assign a given packet to a specific next hop by hashing some fields in the packet header, and using that hash as an index into the array of available backends.

The problem is that the hashes used in routers are not stable, so whenever the size of the backend set changes (for example when a node’s BGP session goes down), existing connections will be rehashed effectively randomly, which means that the majority of existing connections will end up suddenly being forwarded to a different backend, one that has no knowledge of the connection in question.

The consequence of this is that any time the IP→Node mapping changes for your service, you should expect to see a one-time hit where most active connections to the service break. There’s no ongoing packet loss or blackholing, just a one-time clean break.

Depending on what your services do, there are a couple of mitigation strategies you can employ:

  • Pin your service deployments to specific nodes, to minimize the pool of nodes that you have to be “careful” about.
  • Schedule changes to your service deployments during “trough”, when most of your users are asleep and your traffic is low.
  • Split each logical service into two Kubernetes services with different IPs, and use DNS to gracefully migrate user traffic from one to the other prior to disrupting the “drained” service.
  • Add transparent retry logic on the client side, to gracefully recover from sudden disconnections. This works especially well if your clients are things like mobile apps or rich single page web apps.
  • Put your services behind an ingress controller. The ingress controller itself can use MetalLB to receive traffic, but having a stateful layer between BGP and your services means you can change your services without concern. You only have to be careful when changing the deployment of the ingress controller itself (e.g. when adding more nginx pods to scale up).
  • Accept that there will be occasional bursts of reset connections. For low-availability internal services, this may be acceptable as-is.